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Abstract
Semi-infinite d-dimensional systems with an m-axial bulk Lifshitz point
are considered whose (d − 1)-dimensional surface hyper-plane is oriented
perpendicular to one of the m modulation axes. An n-component φ4 field theory
describing the bulk and boundary critical behaviour when (a) the Hamiltonian
can be taken to have O(n) symmetry and (b) spatial anisotropies breaking its
Euclidean symmetry in the m-dimensional coordinate subspace of potential
modulation directions may be ignored is investigated. The long-distance
behaviour at the ordinary surface transition is mapped onto a field theory
with the boundary conditions that both the order parameter φ and its normal
derivative ∂nφ vanish at the surface plane. The boundary-operator expansion is
utilized to study the short-distance behaviour of φ near the surface. Its leading
contribution is found to be controlled by the boundary operator ∂2

nφ. The field
theory is renormalized for dimensions d below the upper critical dimension
d∗(m) = 4 + m/2, with a corresponding surface source term ∝ ∂2

nφ added.
The anomalous dimension of this boundary operator is computed to first order
in ε = d∗ − d. The result is used in conjunction with scaling laws to estimate
the value of the single independent surface critical exponent β

(ord,⊥)
L1 for d = 3.

Our estimate for the case m = n = 1 of a uniaxial Lifshitz point in Ising
systems is in reasonable agreement with the published Monte Carlo results.
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1. Introduction

The significance of the n-component φ4 models with O(n) symmetric Hamiltonian derives
from the fact that they represent the most common—and probably also most important—
universality classes of critical behaviour at bulk critical points of d-dimensional systems with
short-range interactions. Prominent examples of such universality classes for given d and
n = 1, 2 and 3 are those of the Ising, XY and isotropic Heisenberg models, respectively.

When such systems are bounded by free (d − 1)-dimensional hyper-surfaces or walls, a
wealth of distinct boundary critical phenomena can occur [1–4]. A well-studied case is that
of the systems with a free surface that can be described by a semi-infinite n-component φ4

model. The Hamiltonian of the latter is of the form

H =
∫

V

Lb(x) dV +
∫

B

L1(r) dA, (1)

where
∫
V

and
∫
B

mean volume and surface integrals over the half-space V = R
d
+ ≡ {x =

(r, z)|r ∈ R
d−1, 0 � z < ∞} and the z = 0 boundary hyperplane B, respectively. Provided

neither bulk nor surface terms breaking the O(n) symmetry must be included, the bulk and
surface densities are given by

Lb = 1

2
(∇φ)2 +

τ̊

2
φ2 +

ů

4!
|φ|4 (2)

and

L1 = c̊

2
φ2. (3)

Furthermore, one can distinguish three different types of surface transitions that take place
at the bulk critical temperature Tc [1, 2]: they are called ordinary, special and extraordinary
surface transitions and occur, depending on whether c̊ is larger than, equal to or smaller than
a certain critical value c̊sp.

The extraordinary transition is a transition from a surface-ordered, bulk-disordered high-
temperature phase to a low-temperature phase with long-range order both at the surface and
in the bulk. It—and hence also the special transition—can occur only for those choices of
d and n for which fluctuations do not destroy long-range order at the surface at all nonzero
temperatures T. This requires d − 1 > 1 in the scalar case n = 1, and d − 1 > 2 in the
continuous-symmetry case n > 1.

Suppose n and d are such that all three of these transitions can occur. Then the critical
behaviour that surface quantities exhibit at any of these is representative of a separate surface
universality class, although their bulk critical behaviour is the same. Thus the bulk universality
class associated with this choice of n and d splits into three distinct surface universality classes.

In this paper, we shall be concerned with the surface critical behaviour of n-vector
systems at m-axial bulk Lifshitz points. A Lifshitz point (LP) is a multicritical point at which
a disordered, a homogeneous ordered and a modulated ordered phase meet [5–7]. A family
of natural extensions of the bulk models defined on R

d by the bulk density (2) that have such
LPs was introduced decades ago [8, 9], but investigated in greater detail via field-theoretic
renormalization group (RG) only in the past few years (see [10–13] and references therein).
Their bulk density is given by

Lb(x) = σ̊

2

(
m∑

α=1

∂2
αφ

)2

+
1

2

d∑
β=m+1

(∂βφ)2 +
ů

4!
|φ|4 +

ρ̊

2

m∑
α=1

(∂αφ)2 +
τ̊

2
φ2, (4)

where the position vector x has the representation (xγ ) = (xα, xβ) in Euclidean coordinates
xγ . We use the convention that α and β denote coordinate indices γ with 1 � α � m and
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m < β � d, respectively. Likewise, ∂α and ∂β mean the corresponding spatial derivatives
∂γ = ∂/∂xγ . At the level of Landau theory, the model has a continuous transition from a
disordered to a homogeneous ordered phase for ρ̊ > 0 at τ̊ = 0. For negative ρ̊, a continuous
transition to a modulated ordered phase occurs at a nonzero value of τ̊ . The transition lines
between these phases merge at τ̊ = ρ̊ = 0, which is an m-axial LP within Landau theory.

At LPs, systems exhibit scale invariance of the strong anisotropic kind: coordinate
difference 
xα within the α-subspace scale as a nontrivial power (
xβ)θ of the complementary
ones 
xβ , where θ , the anisotropy exponent, generally differs from 1, and in Landau theory
has the mean-field value θMF = 1/2.

Owing to this anisotropic scale invariance, boundary critical phenomena at LPs are richer
than at critical points (CPs). For example, in the CP case, the orientation of the surface
relative to the coordinate axes does not play any important role on the level of a description
in terms of a φ4 field theory. However, for systems at LPs the surface’s orientation matters in
an essential way, just as it does quite generally for systems with anisotropic scale invariance:
two fundamentally distinct orientations can be distinguished—one for which all α-directions
are parallel to the surface (which we shall refer to as parallel) and another one for which the
surface normal n is along one of the m α-directions (which we shall refer to as perpendicular).

As a consequence of the different scaling behaviour of distances along the α- and β-
directions, it depends on whether the orientation of the surface is parallel or perpendicular
which boundary contributions L1 are potentially infrared relevant below the upper critical
dimension d∗(m) = 4 + m/2 and hence must be included in the action. The problem of
constructing semi-infinite extensions of the models with bulk density (4) for d = d∗(m) − ε

that are ‘minimal’ in the sense that all irrelevant and marginal boundary contributions not
compatible with the presumed O(n) and Euclidean5 symmetries are discarded was considered
for the case of parallel surface orientation in [15, 16], where it was found that a contribution
∝ ∑α(∂αφ)2 had to be included in the corresponding surface density L1 ≡ L‖

1, in addition
to the one in equation (3). The so obtained semi-infinite model, defined by equation (4) in
conjunction with the boundary density

L‖
1 = c̊

2
φ2 +

λ̊

2

m∑
α=1

(∂αφ)2, (5)

was then utilized in [16, 17] to determine the ε expansion of the surface critical exponents of
the corresponding ordinary and special transitions to second and first order, respectively. This
extends or complements the previous work based on the mean-field approximation [18] and
Monte Carlo simulations for the axial-next-nearest-neighbour Ising (ANNNI) model [19].

The model is a natural and simple-looking generalization of the semi-infinite n-vector
model defined by equations (2) and (3), to which it reduces when m = 0. The following
fluctuating boundary conditions [2, 3] one obtains for it:

∂nφ = (c̊ − λ̊∂α∂α)φ, (6)

where ∂n (=∂z) is the derivative along the inward normal n, are of the Robin type, generalizing
the familiar ones of the CP (m = 0) case to nonzero values of λ̊.6 As shown in [16, 17], the new
boundary term ∝ λ̊ has the effect of moving the fixed points onto which the ordinary, special

5 We presume that the bulk and the boundary contributions breaking the rotational invariance in the α-subspace may
be ignored. When m > 1, spatial anisotropies lead, in particular, to nonisotropic bulk contributions of the form
Tα1α2α3α4 (∂α1 ∂α2 φ) · ∂α3 ∂α4 φ, where Tα1α2α3α4 is a tensor whose symmetry is that of an m-cube or lower. The O(ε2)

results of [14] for the bulk model indicate that such terms are relevant in the infrared for ε > 0.
6 Here and below we utilize the summation convention that pairs of the same α- and β-indices are to be summed
from α = 1 to m and β = m + 1 to d, respectively.
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and extraordinary transitions are mapped to a nontrivial value λ∗ = O(ε0) of the renormalized
counterpart λ of λ̊.

In the following we shall consider the case of perpendicular surface orientation. Previous
work on it either was restricted to an investigation of the corresponding ordinary transition of
the semi-infinite ANNNI model on the level of the mean-field approximation [20, 21], or else
employed Monte Carlo simulations to study both the ordinary and special transitions of this
model [19].

Our aim is to construct and analyse an appropriate minimal semi-infinite model for
general values of n,m and d. This turns out to be a greater challenge and more interesting
than in the case of parallel surface orientation. Since the classical equation of motion of
the order-parameter profile now involves a differential equation of fourth order in ∂z, two,
rather than one, boundary conditions are required (aside from two analogous ones at z = ∞).
Furthermore, being an xα coordinate, z ≡ xm now scales naively as µ−1/2, where µ is
an arbitrary momentum unit making µxβ dimensionless. Compared to the case of parallel
surface orientation (where z ∼ µ−1), power counting gives more potentially relevant or
marginal surface terms. Recently, one of us has suggested an appropriate surface density L⊥

1
and the associated boundary conditions [22]. In section 2, we recall this density and derive
the fluctuating boundary conditions it implies. Using the latter, we show that the existing
additional surface contributions that are compatible with symmetry and short-rangedness of
interactions, and not irrelevant according to power counting, are redundant.

In section 3 we determine the free propagator subject to these boundary conditions, at the
LP for general values of the surface interaction constants. Owing to its rather complicated
form, explicit perturbative RG calculation for dimensions d = d∗(m) − ε are difficult to
perform with it. In section 4 we show, following a suggestion made in [22], how this problem
can be by-passed to some extent in the case of the ordinary transition. The asymptotic large-
scale behaviour at this transition can be argued to be described by a theory with boundary
conditions,

φ = ∂nφ = 0. (7)

Hence, one can work with the corresponding simplified free propagator at the price of having to
deal with correlation functions involving, besides the field φ, also the boundary operator ∂2

nφ.
From the anomalous dimension of the latter the required single independent surface critical
exponent β

(ord,⊥)
L1 of this transition can be inferred. Performing a one-loop RG analysis, we

compute in section 5 the ε expansion of this exponent to O(ε) for general values of m. The
result is used to estimate its value for the case m = n = 1 of the three-dimensional semi-
infinite ANNNI model. Section 6 contains concluding remarks. Finally, there is an appendix
explaining how the required one-loop integral was calculated.

While it is quite common to investigate field theories with Dirichlet boundary conditions
(see [2, 3, 23, 24] and references therein), we are not aware of previous studies of field theories
satisfying the boundary conditions (7), barring familiar examples of hydrodynamic equations
for fluids [25]. It is therefore not unlikely that the work described below might also be of
interest for other problems.

2. Boundary density and fluctuating boundary conditions

The boundary density suggested in [22] is

L⊥
1 = c̊⊥

2
φ2 + b̊φ∂nφ +

m−1∑
α=1

[
λ̊‖
2

(∂αφ)2 + f̊ (∂αφ)∂n∂αφ

]
+

λ̊⊥
2

(∂nφ)2 (8)
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with f̊ = 0. We have added the term ∝ f̊ since it cannot be ruled out. Contributions breaking
the symmetry among the m − 1 α-directions parallel to the surface have been excluded. That
different values should be allowed for the coupling constants λ̊⊥ and λ̊‖ should be obvious
because the surface breaks the symmetry between α-directions parallel to it and the z-direction.
Besides the monomials included in equation (8), there are a number of other surface operators
one has to worry about, namely

O1 = φ∂2
nφ, O2 = (∂nφ)∂2

nφ, O3 = φ∂3
nφ. (9)

Before discussing these, let us first derive the fluctuating boundary conditions that apply to
the model defined by equations (1), (4) and (8).

To this end, we compute the variation δH of the Hamiltonian. By integrations by parts,
one gets

δH =
∫

V

δφ


∂Lb

∂φ
+

m∑
α=1

∂2
α

∂Lb

∂
(
∂2
αφ
) −

d∑
γ=1

∂γ

∂Lb

∂(∂γ φ)




+
∫

B

δφ

[
∂L⊥

1

∂φ
− ∂Lb

∂(∂nφ)
+ ∂n

∂Lb

∂
(
∂2
nφ
) −

m−1∑
α=1

∂α

∂L⊥
1

∂(∂αφ)

]

+
∫

B

(∂nδφ)

[
∂L⊥

1

∂(∂nφ)
− ∂Lb

∂
(
∂2
nφ
) −

m−1∑
α=1

∂α

∂L⊥
1

∂(∂n∂αφ)

]
. (10)

Equating the expression in curly brackets to zero gives us the classical field equation[
σ̊ (∂α∂α)2 − ρ̊∂α∂α − ∂β∂β + τ̊ +

ů

6
φ2

]
φ = 0. (11)

Doing the same with the expressions in square brackets of the surface integrals
∫
B

δφ[· · · ]
and
∫
B

δ∂nφ[· · · ] yields the boundary conditions{
σ̊ ∂3

n + (b̊ − ρ̊)∂n + c̊⊥ − [λ̊‖ + (f̊ − σ̊ )∂n]
m−1∑
α=1

∂2
α

}
φ = 0 (12)

and {
−σ̊ ∂2

n + λ̊⊥∂n + b̊ − (f̊ + σ̊ )

m−1∑
α=1

∂2
α

}
φ = 0, (13)

respectively.
These boundary conditions hold in Landau theory. Yet, they remain valid inside of

averages, for the same reason that the classical equation (11) does so. To show this, one
can make a shift φ → φ + Φ in the functional integral defining the generating functional
Z[J ] ∝ ∫ Dφ exp

(−H +
∫
V

J · φ
)

of multi-point correlation functions 〈φ · · ·φ〉. For a Φ
independent of φ, the functional measure φ does not change, and one arrives at the equation〈

δH −
∫

V

J ·Φ
〉
J

= 0, (14)

where Φ must be substituted for δφ in δH. Here 〈·〉J indicates a normalized average in the
presence of the source J , i.e. with the weight exp

(−H +
∫
V

J · φ
)
. From the result (14) the

validity of equations (11)–(13) inside of averages can be derived in a well-known fashion by
setting the source to zero, either directly or after taking functional derivatives with respect to
it, and exploiting the arbitrariness of Φ at and away from the boundary. As usual, the source
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term yields extra contributions located at coinciding points to correlation functions generated
by functional differentiation of equation (14). Corresponding fluctuation corrections would
result from additional surface source terms such as

∫
B

J1 · φ.
It is now easy to understand why the surface operators given in equation (9) do not have

to be included in the Hamiltonian: these monomials involve ∂2
nφ and ∂3

nφ. We can solve the
boundary conditions (13) and (12) for these operators and substitute the solutions into the
monomials. The expressions that result for the surface operators O1,O2 and O3 are linear
combinations of the surface operators retained in the surface density (8).7 Thus, the effect
of the boundary operators O1,O2 and O3 can be absorbed by a redefinition of the surface
variables of the surface density (8). That is, they are redundant and may be discarded.

3. Free propagator at the Lifshitz point

We now turn to the calculation of the free propagator G(x,x′) at the LP. To this end we
split the position vector into components parallel and perpendicular to the surface, writing
x = (r, z). We choose z to be xm. The component r then involves the m − 1 α-components
(x1, . . . , xm−1) ≡ r< and the d − m β-coordinates (xβ) = (xm+1, . . . , xd) ≡ r>. For the
wavevector conjugate to r = (r<, r>) we use analogous conventions, writing p = (p<,p>).

From equation (11) one easily concludes that the partial Fourier transform Ĝ(p; z, z′),
defined by

G(x,x′) =
∫

p

Ĝ(p; z, z′) eip · (r−r′) with
∫

p

≡
∫

R
d−1

dd−1p

(2π)d−1
, (15)

obeys the equation[
σ̊
(
p2

< − ∂2
z

)2
+ p2

> + ρ̊
(
p2

< − ∂2
z

)
+ τ̊
]
Ĝ(p; z, z′) = δ(z − z′), (16)

provided the order parameter profile 〈φ(x)〉 vanishes (as it does in the disordered phase). This
equation must be solved subject to the boundary conditions{

σ̊ ∂3
z +
[
b̊ + (f̊ − σ̊ )p2

< − ρ̊
]
∂z + c̊⊥ + λ̊‖p2

<

}
Ĝ(p; z = 0, z′) = 0, (17)

[−σ̊ ∂2
z + λ̊⊥∂z + b̊ + (f̊ + σ̊ )p2

<

]
Ĝ(p; z = 0, z′) = 0, (18)

and the requirement that the correct bulk propagator Ĝb(p, z − z′) is obtained as z, z′ → ∞
at fixed z − z′. Furthermore, in order that the highest derivative, ∂4

z , produces the δ-function
in equation (16), both Ĝ(p; z, z′) and its bulk counterpart must satisfy the jump condition[

σ̊ ∂3
z Ĝ(p; z, z′)

]z=z′+0
z=z′−0 = 1. (19)

Further, Ĝ(p; z, z′) must be symmetric under exchange of z and z′ because G(x,x′) is
the inverse of a symmetric integral kernel A(x,x′) associated with the Gaussian part∫
V

ddx
∫
V

ddx ′φ(x)A(x,x′)φ(x′)/2 of the Hamiltonian (including boundary terms).
To simplify our analysis, we restrict ourselves to the LP, setting ρ̊ = τ̊ = 0. It is

also convenient to set the variable σ̊ (whose renormalized counterpart σ changes under RG
transformations) temporarily to unity. The dependence on it can be re-introduced whenever
needed by elementary dimensional considerations. For instance, for the free propagator these
lead to the relation

Ĝ(p<,p>; z, z′|σ̊ ) = σ̊−1/4Ĝ(σ̊ 1/4p<,p>; σ̊−1/4z, σ̊−1/4z′|1). (20)

7 In expressions such as φ ·∑m−1
α=1 ∂2

αφ and ∂nφ ·∑m−1
α=1 ∂2

αφ, the derivatives ∂α evidently can be made to act as

(−←−
∂ α) to the left, by means of integrations by parts.
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The bulk propagator at the LP can be computed in a straightforward fashion. One obtains

Ĝb(p, z) =
∫ ∞

−∞

dk

2π

eikz(
k2 + p2

<

)2
+ p2

>

(21)

= e−κ+|z|

4κ+κ−
(
κ2

+ + κ2−
) [κ− cos(κ−|z|) + κ+ sin(κ−|z|)], (22)

where we have written the roots of the denominator of the required Fourier integral as ±κ−±iκ+,
with

κ± = 1√
2

√√
p4

< + p2
> ± p2

<. (23)

In terms of the linearly independent solutions

Wj(p, z) =




e−κ+z cos(κ−z) for j = 1,

e−κ+z sin(κ−z) for j = 2,

eκ+z cos(κ−z) for j = 3,

eκ+z sin(κ−z) for j = 4,

(24)

of the homogeneous counterpart of equation (16) with ρ̊ = τ̊ = 0 and σ̊ = 1, the free
propagator of the semi-infinite system can be expressed as

Ĝ(p; z, z′) = θ(z − z′)
2∑

j=1

Wj(p, z)Vj (p, z′) + (z ↔ z′) (25)

where

Vj (p, z′) =
4∑

k=1

CjkWk(p, z′). (26)

The coefficients Cjk are chosen such that Vj=1,2(p, z) satisfy the two boundary conditions
(17) and (18) with ρ̊ = 0 and σ̊ = 1, that Ĝ(p; z, z′) and its first and second derivatives
with respect to z are continuous at z = z′, and the jump condition (19) is fulfilled (again with
σ̊ = 1).

It is convenient to split off the known bulk propagator, writing

Ĝ(p; z, z′) = Ĝb(p; z, z′) + Ĝs(p; z, z′). (27)

Here Ĝs, the part due to the surface, is (at least) four times differentiable in z and z′, and does
not contribute to the jump of ∂3

z Ĝ at z = z′, which originates entirely from Ĝb. Thus, the
jump condition (19) is taken care of. We can decompose Ĝb in the same way as we did for Ĝ

in equations (25) and (26), with corresponding coefficients C
(b)
jk . Evidently, only C

(b)
jj ′+2 with

j, j ′ = 1, 2 are nonzero and can be read off from equation (21), but C
(b)
jj ′ = 0. Since Ĝs must

not have exponentially increasing parts, four of the coefficients Cjk , namely Cjk = C
(b)
jk with

k = 3, 4, follow immediately from our result (21) for Ĝb:

C13 = C24 = 1

4κ+
(
κ2

+ + κ2−
) = −κ−

κ+
C14 = κ−

κ+
C23. (28)

The remaining four coefficients must be determined from the two boundary conditions (17)
and (18) for V1 and V2.



7934 H W Diehl et al

A straightforward calculation yields

C11 = C13

D

[
B+ + p2

> + 8κ4
+ + L − C

]
,

C12 = C21 = C23

D

[
B− − p2

> + L − C
]
,

C22 = C13

κ2−D

[
Bκ + p2

>κ2
− − κ2

−L − Cκ

]
,

(29)

where we introduced the short-hand notations

b̊p<
≡ b̊ + f̊ p2

<, c̊p<
≡ c̊⊥ + λ̊‖p2

<,

B+ = b̊p<

(
b̊p<

+ 4κ2
+

)
, B− = b̊p<

(b̊p<
− 4κ2

−), Bκ = b̊p<

[
b̊p<

(
κ2

− + 2κ2
+

)− p2
>

]
,

C = c̊p<
(λ̊⊥ + 2κ+), Cκ = c̊p<

[
2κ2

−κ+ − λ̊⊥
(
κ2

− + 2κ2
+

)]
,

L = 2λ̊⊥κ+
(
κ2

− + κ2
+

)
, D = −B+ + p2

> + L + C.

(30)

The resulting lengthy expression for the free propagator for general values of the surface
interaction constants will not be used in the rest of the paper. The explicit form of the free
propagator that we shall actually utilize is given in the next section, see equation (35).

4. Asymptotic boundary conditions at the ordinary transition

We now turn to the analysis of the ordinary transition. Let us begin by considering first the
simpler case of the ordinary transition at a critical point (CP), and recall some essentials of its
RG analysis. The critical behaviour at this transition is described by a fixed point at which the
Dirichlet boundary condition φ|z=0 = 0 holds. One can choose this boundary condition from
the outset (already for the bare theory) by setting the interaction constant c̊ of the corresponding
surface density (3) to the value c̊ord = ∞ [2, 3, 26, 27]. To obtain the behaviour of N-point
correlation functions involving fields φ close to the surface, one can employ the boundary
operator expansion (BOE) [2, 3, 27]

φren(r, z) ≈
z→0

C∂nφ(z)(∂nφ)ren(r), (31)

where φren and (∂nφ)ren denote renormalized operators. The required independent surface
critical exponent βord

1 , which together with the usual bulk critical indices yields the other
surface critical exponents of this CP ordinary transition via scaling laws, can be inferred from
the scaling dimension 
[∂nφ] = βord

1 /ν of ∂nφ or the behaviour

C∂nφ(z) ∼ z(β−βord
1 )/ν (32)

of the coefficient function C∂nφ .
This CP ordinary transition must be recovered when ρ > 0 for appropriate choices

of the surface interaction constants. It is therefore reasonable to expect that the Dirichlet
boundary condition will prevail when ρ → 0, i.e. at the fixed point describing the LP ordinary
transition. To show this and to find the required second boundary condition, note that the
surface variables with the largest µ-dimension are c̊⊥ and b̊. At the trivial Gaussian fixed
point, their dimensionless counterparts c⊥ ≡ µ−3/2c̊⊥ and b ≡ µ−1b̊ transform under scale
transformations µ → µ� as

c⊥ → c̄⊥(�) = �−3/2c⊥ and b → b̄(�) = �−1b. (33)

Since the ordinary transition corresponds to the case where order is suppressed near the surface,
we can take c̊⊥ to be positive. Thus, c̄⊥ → +∞ in the large length-scale limit � → 0. Further,
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unless fine-tuned, b̊ is not expected to vanish. Equation (33) tells us that b̄(�)/c̄(�) approaches
zero as � → 0. The other coupling constants appearing in the boundary conditions (12), (13),
(17) and (18) with ρ̊ = 0 have µ-dimensions smaller than both c̊⊥ and b̊. Hence, the ratio of
the associated running variables and either c̄⊥ or b̊ also becomes small as � → 0. We conclude
that both φ|z=0 and ∂nφ must become small in this limit in order for these boundary conditions
to hold. In other words, the boundary condition (7) should apply in the large length-scale
limit. In the following we exploit this idea by choosing them from the outset for the bare
theory.

Let us denote by Ĝ00(p; z, z′) the free propagator that satisfies the boundary conditions

Ĝ00(p; z, z′)|z=0 = ∂zĜ00(p; z, z′)|z=0 = 0. (34)

It can be determined in a straightforward manner. One gets

Ĝ00(p; z, z′) = Ĝb(p; z − z′) − Ĝb(p; z + z′) − sin(κ−z) sin(κ−z′)
2κ2−κ+

e−κ+(z+z′). (35)

Information about correlations near the surface can again be obtained via the BOE.
Because of the boundary conditions (7), the leading operator contributing to the BOE of φ

now is ∂2
nφ; we have

φren(r, z) ≈
z→0

C∂2
nφ(z)
(
∂2
nφ
)ren

(r) (36)

instead of equation (31). The renormalized operator will be defined in the next section. Suffice
it here to say that its scaling dimension



[
∂2
nφ
] = β

(ord,⊥)
L1

/
νL2, (37)

where νL2 is a bulk correlation-length exponent, gives us the surface critical exponent β
(ord,⊥)
L1 ,

and that by analogy with equation (32) we have

C∂2
nφ(z) ∼ z(βL−(β

(ord,⊥)
L1 )/(θνL2). (38)

5. RG analysis of the ordinary transition

Focusing our attention on the theory with the boundary conditions (7), we introduce the
(N + M)-point cumulants

G
(N,M)
a1,...,bM

(x, r) ≡
〈

N∏
i=1

φai
(xi )

M∏
j=1

∂2
nφbj

(rj )

〉cum

. (39)

To regularize their ultraviolet (UV) singularities, we employ dimensional regularization. Apart
from bulk UV singularities known from studies of bulk critical behaviour [12–14], they have
(primitive) UV surface singularities originating from the surface part of the free propagator, i.e.
the last two terms on the right-hand side (rhs) of equation (35). We use the reparametrization
convention of [14, 16, 17] to absorb the UV bulk singularities, introducing renormalized
quantities and renormalization factors via

φ = Z
1/2
φ φren, σ̊ = Zσσ, ůσ̊−m/4 = Fm,εµ

εZuu, (40)

τ̊ − τ̊LP = µ2Zτ [τ + Aτρ
2], (ρ̊ − ρ̊LP)σ̊

−1/2 = µZρρ, (41)

with

Fm,ε = �(1 + ε/2)�2(1 − ε/2)�(m/4)

(4π)(8+m−2ε)/4�(2 − ε)�(m/2)
, (42)
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Figure 1. One-loop graph of Ĝ(1,1)(p, z1). The stroke indicates the derivative ∂z. Crossed
and open circles indicate points on and off the surface, respectively. Thus, the crossed circle in
conjunction with the double stroke on the right represents the surface operator ∂2

nφ.

where we have explicitly indicated the dependence on σ̊ . Two-loop results for the
renormalization factors Zφ,Zσ , Zρ and Zτ can be found in [13]. The renormalization function
Aτ was computed to one-loop order in [16]; the result will not be needed in the following.

To absorb the primitive UV surface singularities, additional counter-terms with support
on the surface are needed. We introduce a renormalization factor Z2 and renormalized surface
operator (∂2

nφ)ren via

∂2
nφ = [Z2Zφ]1/2

(
∂2
nφ
)ren = Z

1/2
2 ∂2

nφren. (43)

Power counting shows that besides the surface counter-term resulting from Z2,G
(0,2) requires

an additive renormalization. Let us write the source term of the action needed to generate
insertions of the bare surface operator ∂2

nφ as
∫
B

dd−1rJ2(r) ·∂2
nφ(r). Then the J2-dependent

part of the renormalized action can be written as∫
B

dd−1r
[
Z

−1/2
2 J2 · ∂2

nφren + µ1/2σ−5/4S2J
2
2

]
. (44)

This requires some explanation. The counter-term involving Z2 absorbs UV singularities
∼ ln �; as usual, the latter manifest themselves as poles at ε = 0 in the dimensional
regularization scheme we prefer to employ. That such poles indeed occur can be seen from
the one-loop graph of G(1,1) shown in figure 1. Its closed loop involves the distribution

G00(x,x) = σ̊−1/4µ−3/2ž−4+2εgε(m)Fm,ε, (45)

in which ž ≡ σ̊−1/4µ1/2z denotes the dimensionless counterpart of z, while gε(m) is a number
given by

gε(m) = F−1
m,ε

∫
p

Ĝ00(p; 1, 1|σ̊ = 1). (46)

Since ž � 0, the power ž−4+2ε corresponds to the generalized function ž−4+2ε
+ of [28]. Upon

substituting its well-known Laurent expansion [28] (see also the appendix of [2]), we obtain

G00(x,x)/Fm,ε = σ̊−1/4µ−3/2g0(m)
−1

6

δ′′′(ž)
2ε

+ O(ε0). (47)

The quantity gε(m) is computed in the appendix for general values of m. Our subsequent
results involve its value at ε = 0, which is

g0(m) = 2 − m − 3

4 − m

{
2 − m +

24

m + 2
− (2π)1/2(2m − 5)(m − 1)�(m/2)

8�[(m + 1)/2]

+
1

m
2F1[2, (m − 1)/2; (m + 2)/2;−1]

}
, (48)
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and reduces to

g0(1) = −9 (49)

in the uniaxial case m = 1.
In accordance with its indicated µ-dimension, the counter-term ∝ S2 diverges ∼√

�. Its
is analogous to the surface counter-term C∞ ∼ � in equation (3.135) of [2] needed in the
CP case to renormalize the corresponding correlation functions

〈
φa1 · · ·φaN

∂nφba
· · · ∂nφbM

〉
in the cutoff-regularized theory. Just as C∞ ∼ �, the counter-term∝ S2 vanishes in the
dimensionally regularized theory. We therefore do not consider it any further.

Suppressing the tensorial indices a1, . . . , bM , we denote the renormalized counterparts of
the cumulants (39) as

G(N,M)
ren = Z

−(N+M)/2
φ Z

−M/2
2 G(N,M). (50)

A standard way of reasoning yields their RG equations[
µ∂µ +

∑
℘=u,σ,ρ,τ

β℘∂℘ +
N + M

2
ηφ +

M

2
η2

]
G(N,M)

ren = 0, (51)

where β℘ are bulk β-functions in the notation of [16, 17]. Both βρ and βτ vanish at the LP
and will not be needed in the rest of the paper. The functions βu(ε, u) and ησ (u) ≡ −βσ /σ

are known to order u3 from [13].
As a consequence of these RG equations, we have for the coefficient function C∂2

nφ(z),[
µ∂µ +

∑
℘=u,σ,ρ,τ

β℘∂℘ − η2

2

]
C∂2

nφ(z) = 0. (52)

Solving this at the LP ρ = τ = 0 gives

C∂2
nφ(z) ∼ (µσ−1/2)η

∗
2/(4θ)z(η∗

2+4θ)/(2θ), (53)

where η∗
2 = η2(u

∗) means the value of η2 at the infrared-stable fixed point u∗ = O(ε). The
result can be combined with equation (38) to conclude that

β
(ord,⊥)
L1 = (d − m − 2 + ηL2 + mθ + η∗

2 + 4θ)νL2/2

= βL + (4θ + η∗
2)νL2/2. (54)

Here βL = νL2[d − 2 + ηL2 + m(θ − 1)] is the usual bulk magnetization exponent.
The scaling behaviour of other surface quantities can be derived along similar lines by

exploiting the RG equation (51) in conjunction with the BOE (36). In this manner, one can
determine how the associated surface critical exponents can be expressed in terms of four
independent bulk critical exponents, such as ηL2, θ , νL2 and ϕ, and the surface magnetization
index β

(ord,⊥)
L1 .

As an example, let us consider the surface susceptibility χ11(p) = Ĝ(2,0)(p; z = 0,

z′ = 0), the Fourier p-transform of the response of 〈φ|z=0〉 with respect to a surface magnetic
field h1. To characterize the asymptotic low-momentum behaviour of this quantity at the LP,
we introduce the surface exponent η‖ by analogy with the CP case via

χ
(sing)

11 (p) ∼
p→0

{
p<

(η‖−1)/θ for p> = 0,

p>
η‖−1 for p< = 0,

(55)

where sing means singular part. (At the ordinary transition considered here, χ11 does not
diverge but approaches a finite value.)
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To identify η‖, we apply the BOE (36) to both external legs of Ĝ(2,0)(p, z, z′), and exploit
the behaviour (53) of the coefficient function together with the scaling forms of G(2,0) and
G(0,2) implied by their RG equations. This gives, for example,

Ĝ(2,0)
ren (p; z, z′) ∼

z,z′→0
p>

−2+ηL2+θ
[(

zpθ
>

)(
z′pθ

>

)](η∗
2+4θ)/(2θ)

, (56)

which tells us that

η
(ord,⊥)
‖ = 5θ − 1 + ηL2 + η∗

2 . (57)

Other surface exponents, such as the surface susceptibility exponents γ11 and γ1, can be
expressed in a similar manner in terms of β

(ord,⊥)
L1 and bulk exponents. In particular, the usual

scaling law γ11 = νL2(1 − η‖) for the surface susceptibility exponent γ11 is found to remain
valid, as suspected by Binder and Frisch [21].

Next, we turn to the computation of the still unknown RG function Z2. Using the result
(47), one can determine it to one-loop order in a straightforward fashion. Application of the
distribution −δ′′′(z) to the external legs of Ĝ(0,2)(p) and Ĝ(1,1)(p; z1) gives(−δ′′′(z),

[
Ĝ00

←−
∂ 2

n

]2) = 6∂2
nĜ00

←−
∂ 2

n (58)

and (−δ′′′(z), Ĝ00(p; z1, z)
[
Ĝ00

←−
∂ 2

n

]
(p; z, 0)

) = 3
[
Ĝ00

←−
∂ 2

n

]
(z1, 0), (59)

respectively. The implied poles of both Ĝ(0,2)
ren (p) and Ĝ(1,1)

ren (p; z1) get cancelled if we choose

Z2 = 1 − g0(m)
n + 2

3

u

4ε
+ O(u2), (60)

where we utilized the fact that Zφ = 1 + O(u2). The derivative −u∂u of this function’s
residuum at ε = 0 gives us the RG function η2. Substituting for u its fixed-point value
u∗ = 6ε/(n + 8) + O(ε2) then yields

η∗
2 = g0(m)

n + 2

12
u∗ + O[(u∗)2] = g0(m)

n + 2

n + 8

ε

2
+ O(ε2). (61)

The result can be combined with the known ε expansions of the bulk exponents in equation (54)
to obtain

β
(ord,⊥)
L1 = (νL2/2)[4 − ε + η∗

2] + O(ε2)

= 1 +
ε

4(n + 8)

[
n − 4 +

n + 2

2
gm(0)

]
+ O(ε2). (62)

In the uniaxial scalar case m = n = 1 of the ANNNI model, this simplifies to

β
(ord,⊥)
L1 = 1 − 11

24
ε + O(ε2) =

[
1 +

11

24
ε + O(ε2)

]−1

. (63)

Setting ε = 3/2 in the first and second expressions on the rhs (i.e. in the direct series and the
[0/1] Padé approximant) yields the d = 3 estimates β

(ord,⊥)
L1 � 0.31 and 0.59, respectively,

which is to be compared with Pleimling’s Monte Carlo result 0.62(1) [19]. Though these
numbers are encouraging, our present knowledge of the series (63) to just first order in ε

clearly is insufficient to produce estimates that are competitive in accuracy with this Monte
Carlo value. We therefore refrain from giving further extrapolated values for other surface
exponents. Experience with the bulk case [13] suggests that much better field-theoretic
estimates should become possible once η∗

2 is known to O(ε2). In view of the simplifications
entailed by the approach developed here, such a two-loop calculation should not be too difficult.
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6. Concluding remarks

In this paper, we have extended previous field-theoretic work on boundary critical behaviour
at m-axial LPs [15–17, 22] by studying the critical behaviour at the ordinary transition of
a semi-infinite system that is bounded by a surface perpendicular to an α-direction. This
geometry was the one considered in the earliest investigations [20, 21] of boundary critical
behaviour at LPs. However, to construct an appropriate minimal field-theory model and
analyse it in a systematic fashion by means of modern RG method below the upper critical
dimension turned out to be quite a challenge, mainly because significantly more potentially
relevant (short-range) surface contributions must be considered than in the simpler case where
the surface is perpendicular to the β-direction.

Taking up a suggestion made earlier [22], we found a way to by-pass the enormous
technical difficulties one is faced with when having to carry along many surface interaction
constants. The basic idea is to choose the boundary conditions (7) the theory is expected
to satisfy on long length-scales at the ordinary transition from the outset, showing that they
correspond to a fixed point of the RG. While we have not investigated deviations from this
fixed point associated with modification of these boundary conditions (e.g. finite values of
the surface couplings c̊⊥ and b̊), our results are completely consistent with the physically
reasonable expectation that these boundary conditions are associated with a stable fixed point
of the RG.

The benefit of our procedure is twofold: (i) used in conjunction with the BOE, the RG
equations we obtained enabled us to derive scaling laws relating the surface critical exponents
at this transition to bulk exponents and a single independent surface index, such as β

(ord,⊥)
L1 .

(ii) Owing to the gain in technical simplification, an explicit one-loop calculation could be
performed to obtain the ε expansion of β

(ord,⊥)
L1 and related surface exponents to first order. Of

course, one cannot expect to get precise numerical estimates for the critical exponents at d = 3
from such an O(ε) result. Nevertheless, the extrapolated values we obtained for β

(ord,⊥)
L1 in the

case of the three-dimensional semi-infinite ANNNI model by direct extrapolation to d = 3
and via a [0/1] Padé approximant agree reasonably well with recent Monte Carlo results [19]
(albeit different numbers could be obtained if other scaling-law expressions for β

(ord,⊥)
L1 were

employed in conjunction with the best estimates of [13] for the required bulk exponents).
More reliable field-theoretic estimates should be possible on the basis of O(ε2) results. The
required two-loop calculation appears to be quite manageable.

A more difficult task is to perform an analogous two-loop RG analysis of the corresponding
LP special transition. Since this requires the identification of the associated fixed point in
the space of surface coupling constants, one cannot avoid retaining the dependence on these
variables (see the analysis of the special transition for the case of parallel surface orientation
[17] for comparison).

From a more general perspective, the present investigation is, to our knowledge, the
first one dealing beyond the classical level with a field theory subject to the two boundary
conditions (7). Both our way of investigating this field theory as well as our result that this
boundary condition correspond to a stable fixed point of the RG might have applications in
other contexts.
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Appendix. Calculation of one-loop integral

Here we compute the number gε(m) introduced in equation (46).
Let us denote the bulk propagator in position space as Gb(x − x′). Taking into account

that Gb(0) vanishes at the LP in dimensional regularization, we obtain from equations (45)
and (46) the result

gε(m)Fm,ε = G00(x,x|σ̊ = 1)|z=1 = −Gb(r = 0, 2z|1)|z=1 + Kd−mKm−1Iε(m). (A.1)

The first term on the rhs follows from equations (7), (A.5) and (A.6) of [13]. It is given by

Gb(0, 2|1) = 2−1−mπ−(6+m−2ε)/4 �(2 − ε)

�[(m − 2 + 2ε)/4)]
. (A.2)

In the second contribution we have split off the factors originating from the angular integrations,
with

Kd ≡ 2(4π)−d/2/�(d/2). (A.3)

In the remaining integral we make the changes of variables p> → P = p>/p2
< and

p< → p = p</
√

2 to obtain

Iε(m) = −
∫ ∞

0
dp>pd−m−1

>

∫ ∞

0
dp<pm−2

<

sin2(κ−)

2κ2−κ+
e−2κ+

= −2β

∫ ∞

0
dPP ν

∫ ∞

0
dppα−1 sin2(pk−)

k−
e−2pk+ (A.4)

with

α = 2d − 4 − m = 4 − 2ε, β = α + 1

2
, ν = α − m

2
. (A.5)

We have introduced

k± ≡ (√1 + P 2 ± 1
)1/2

, (A.6)

for which

k−k+ = P, k2
+ − k2

− = 2, (k+ − ik−)2 = 2(1 − iP). (A.7)

Upon integrating by parts with respect to p and using sin2 x = (1 − cos 2x)/2, we arrive
at

Iε(m) = 2β

α

∫ ∞

0
dPP ν

[∫ ∞

0
dppα sin(2pk−) e−2pk+ − 2k+

k−

∫ ∞

0
dppα sin2(pk−) e−2pk+

]

= 2β

α

[
−
∫ ∞

0
dPP ν−1k2

+I
(0)
p +
∫ ∞

0
dPP νI (1)

p +
∫ ∞

0
dPP ν−1(

√
1 + P 2 + 1)I (2)

p

]
(A.8)
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with

I (0)
p =
∫ ∞

0
dppα e−2pk+ = 2−2β�(2β)k−2β

+ , (A.9)

I (1)
p =
∫ ∞

0
dppα sin(2pk−) e−2pk+ = 2−3β �(2β)

2i
[(1 − iP)−β − (1 + iP)−β] (A.10)

and

I (2)
p =
∫ ∞

0
dppα cos(2pk−) e−2pk+ = 2−3β �(2β)

2
[(1 − iP)−β + (1 + iP)−β]. (A.11)

The remaining p-integrations can be conveniently performed by means of Maple8. After
some rearrangements the result becomes

Iε(m) = −22ε−5�

(
m − 1

2

)
�(4 − 2ε)

[
�(2 − m/2 − ε)

�(3/2 − ε)
cos

(
π

m + 2ε

4

)

+ (3 − 2ε)21−m/2−ε �(1 − m/4 − ε/2)

�(3/2 + m/4 − ε/2)

− 1

2
√

π
�
(
−m

2

)
cos

(
π

m − 2ε

4

)
2F1

(
2 − ε,

m − 2

2
; m + 2

2
;−1

)

+
m − 1

2

�(2 − m/2 − ε)�(m/2)

�(2 − ε)�(m/2 + 1/2)
cos

(
π

m + 2ε

4

)

× 2F1

(
2 − m

2
− ε,−1

2
; 1 − m

2
;−1

)]
. (A.12)

For the uniaxial case m = 1, the required integration is simple, yielding

Iε(1) = −
√

2
∫ ∞

0
dpp1−ε sin2(

√
p/2) e−√

2p

= 2ε−7/2�(4 − 2ε)[4 + 2ε cos(πε/2)] (A.13)

in conformity with equation (A.12).
Upon substituting expression (A.12) into equation (A.1) and using equation (45) together

with the definition (42) of Fm,ε , one obtains the result for g0(m) given in equation (48).
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